Modeling Potential Evapotranspiration by Improved Machine Learning Methods Using Limited Climatic Data

نویسندگان

چکیده

Modeling potential evapotranspiration (ET0) is an important issue for water resources planning and management projects involving droughts flood hazards. Evapotranspiration, one of the main components hydrological cycle, highly effective in drought monitoring. This study investigates efficiency two machine-learning methods, random vector functional link (RVFL) relevance machine (RVM), improved with new metaheuristic algorithms, quantum-based avian navigation optimizer algorithm (QANA), artificial hummingbird (AHA) modeling ET0 using limited climatic data, minimum temperature, maximum extraterrestrial radiation. The outcomes hybrid RVFL-AHA, RVFL-QANA, RVM-AHA, RVM-QANA models compared single RVFL RVM models. Various input combinations three data split scenarios were employed. results revealed that AHA QANA considerably methods ET0. Considering periodicity component radiation as inputs prediction accuracy applied methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

modeling loss data by phase-type distribution

بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...

Neural network approach to reference evapotranspiration modeling from limited climatic data in arid regions

In order to better manage the limited water resources in arid regions, accurate determination of plant water requirements is necessary. For that, the evaluation of reference evapotranspiration (ET0)--a basic component of the hydrological cycle--is essential. In this context, the Penman Monteith equation, known for its accuracy, requires a high number of climatic parameters that are not always f...

متن کامل

Estimating Evapotranspiration using Machine Learning Techniques

The measurement of evapotranspiration is the most important factor in irrigation scheduling. Evapotranspiration means loss of water from the surface of plant and soil. Evaporation parameters are being used in studying water balances, water resource management, and irrigation system design and for estimating plant growth and height as well. Evapotranspiration is measured by different methods by ...

متن کامل

Analyzing the performance of different machine learning methods in determining the transportation mode using trajectory data

With the widespread advent of the smart phones equipping with Global Positioning System (GPS), a huge volume of users’ trajectory data was generated. To facilitate urban management and present appropriate services to users, studying these data was raised as a widespread research filed and has been developing since then. In this research, the transportation mode of users’ trajectories was identi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Water

سال: 2023

ISSN: ['2073-4441']

DOI: https://doi.org/10.3390/w15030486